幂指函数是什么,举几个例子,谢谢
幂指函数既像幂函数,又像指数函数,二者的特点兼而有之作为幂函数,其幂指数确定不变,而幂底数为自变量;相反地,指数函数却是底数确定不变,而指数为自变量。幂指函数就是幂底数和幂指数同时都为自变量的函数。这种函数的推广,就是广义幂指函数。
定义
幂指函数指数和底数都是变量的函数,形如 是数集)的函数称为幂指函数,其中 u,v 是 E 上的函数。
当不给出 u(x)与 v(x) 当具体形式是,总要求 。因此,幂指函数可改写成由 与 复合而成的函数 f(g(x)),从而当 u,v 连续时它连续,u,v 可微时它也可微。[1]
幂指函数既像幂函数,又像指数函数,二者的特点兼而有之。作为幂函数,其幂指数确定不变,而幂底数为自变量;相反地,指数函数却是底数确定不变,而指数为自变量。幂指函数就是幂底数和幂指数同时都为自变量的函数。这种函数的推广,就是广义幂指函数。
具体例子
最简单的幂指函数就是y=xx。说简单,其实并不简单,因为当你真正深入研究这种函数时,就会发现,在x<0时,函数图象存在“黑洞”——无数个间断点,如右图所示(用虚线表示)。
在x>0时,函数曲线是连续的,并且在x=1/e处取得最小值,约为0.6922,在区间(0,1/e]上单调递减,而在区间[1/e,+∞)上单调递增,并过(1,1)点。
图1.最简单的幂指函数
此外,从函数y=xx的图象可以清楚看出,0的0次方是不存在的。这就是为什么在初等代数中明文规定“任意非零实数的零次幂都等于1,零的任意非零非负次幂都等于零”的真正原因。
幂指函数是初等函数吗
幂指函数不是初等函数,幂指函数是复合函数。
幂指函数既像幂函数,又像指数函数,二者的特点兼而有之。作为幂函数,其幂指数确定不变,而幂底数为自变量;相反地,指数函数却是底数确定不变,而指数为自变量。幂指函数就是幂底数和幂指数同时都为自变量的函数。这种函数的推广,就是广义幂指函数。
初等函数(elementary function)包括代数函数和超越函数。初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经过有限次的四则运算(有理运算)及有限次复合后所构成的函数类。这是分析学中最常见的函数,在研究函数的一般理论中起重要作用。
不是任何两个函数都可以复合成一个复合函数,只有当Mx∩Du≠Ø时,二者才可以构成一个复合函数。设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。
幂指函数算不算初等函数? 算不算复合函数?
幂指函数不算初等函数,但是复合函数。
初等函数是指数函数、对数函数、幂函数、三角函数和反三角函数经过有限次的四则运算及有限次复合后所构成的函数类。
变量x与y之间通过变量u形成的一种函数关系,称为复合函数,幂指函数,就是y=a^u,u=x^b,通过中间变量,形成的复合函数y=a^(x^b).