一、拉普拉斯分块矩阵公式是什么?

设两方阵A(n*n),B(m*m)在副对角线上,通过矩阵的列变换将A,B移到主对角线上,然后用拉普拉斯展开A的第一列列变换m次,A的第二列列变换也是m次,依此类推,A的第n列的列变换也是m次,可以得知列变换共进行了m*n次,列变换完成后,B已经移到主对角线上了,所以要乘(-1)^(m*n)。

设两方阵A(n*n),B(m*m)在副对角线上,通过矩阵的列变换将A,B移到主对角线上,然后用拉普拉斯展开。A的第一列列变换m次,A的第二列列变换也是m次,依此类推,A的第n列的列变换也是m次,可以得知列变换共进行了m*n次,列变换完成后,B已经移到主对角线上了,所以要乘(-1)^(m*n)。

对矩阵进行适当分块,可使高阶矩阵的运算可以转化为低阶矩阵的运算,同时也使原矩阵的结构显得简单而清晰,从而能够大大简化运算步骤,或给矩阵的理论推导带来方便。

初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的`一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。

发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。

二、分块矩阵常用公式

计算公式如下:

1.加法

设,,用同样的方法对A,B进行分块,即,为同型矩阵,则。

2.数乘

设,k是任意数,定义分块矩阵与k的数乘为。

3.乘法

设A是阶矩阵,B是阶矩阵,即A的列数=B的行数,分块,,即A的列分块法=B的行分块法。

请点击输入图片描述

则A与B的乘积是阶分块矩阵,

其中,。

转置

设矩阵是阶分块矩阵,,则。